km =	me ronowing conve	1 m =	cm	1 in =	cm	1 mile =	m
kg =	9	1 kg =	lbs	1 L =	mL	1 hour =	sec
ut the	e following numbers 454	s in scientific n	otation: 0.000	678		_	
xpan	d the following num 3.41 x 10 ⁻³	nbers:		8.341 x 10 ³	3		
erforr	m the following con	versions: (Sho	w your wo	rk!)			
1.	7.4 miles =	m					
2.	165 lbs =	kç	9				
3.	3.2 m ² =	c	m²				
4.	67 mph =	m/s					
5.	24 m/s =	mph					
6.	5.67 ft =	m					
olve 1	the following equation	ions for x:					
7.	$\frac{4x}{10} = \frac{5}{3}$			9. 4x ² =	400		
0				10 8	- 30		

Graphing:

- 11. Graph the following points:
 - x y 2 6 4 10 6 14
 - 8 18
- 12. Calculate the slope of the line.
- 13. Find the equation of the line. (y = mx + b form)

Use the **triangle** below to answer the following questions:

14. Find the length of side b.

15. Find angle A in degrees

Playing With Cars Lab:

- 16. On the distance vs. time graph for the car that moved at constant speed:
 - a. What were the units for the slope?
 - b. What did the slope represent? (think rise/run) _____
- 17. What is the **unit** for distance we used? _____ time? _____ speed? _____
- 18. If you were to get a curved line on a distance vs. time graph, what would the car be doing?
- Sketch a speed vs. time graph for a car moving at a constant speed of 20 m/s for 4 sec.
 Calculate the area under the graph. Determine what unit the area is measured in. If you are unsure...multiply the units of the area to see what is left.

Speed		The area is	The unit is
(m/sec)			
	 Time (sec)		

20. Sketch a **speed vs. time** graph and put **3 lines** on it: one that represents an object moving at constant speed, one that is accelerating, and one that is decelerating (slowing down). **Label** each line!